基于伪随机码调制的测距通信一体化激光雷达

张宇飞1,2,贺岩1,刘梦庚1,3,陈卫标1

(1. 中国科学院上海光学精密机械研究所 空间激光信息传输与探测技术重点实验室,上海 201800;
 2. 中国科学院大学,北京 100049;
 3. 上海科技大学 物质科学与技术学院,上海 201210)

摘 要:由于自主导航等领域对激光雷达的需求,构建了基于伪随机码调制的测距、通信一体化激光 雷达。该系统具有功耗低、体积小、多功能的优点。该系统采用伪随机编码的方式,实现了测距与通信 的功能复合,采用硅光电倍增管进行光子计数,实现了系统的小型化。详细介绍了测距、通信一体化 的设计原理、系统组成、仿真分析和实验结果。实验结果表明,在日光条件下,对反射率为 0.1 的目标 实现了1km 的测距,测距精度小于1m,实现了码率为 10 kbps,误码率小于 10⁻⁵,距离 3.7 km 的通信。 关键词:自主导航; 伪随机码; 硅光电倍增管; 测距通信一体化; 激光雷达 中图分类号:TN958.98 文献标志码:A DOI: 10.3788/IRLA201847.0930003

Integrated lidar of ranging and communication based on pseudorandom code modulation

Zhang Yufei^{1,2}, He Yan¹, Liu Menggeng^{1,3}, Chen Weibiao¹

 Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;

 University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Physical Science and Technology ShanghaiTech University, Shanghai 201210, China)

Abstract: Be cause of the requirement of autonomous navigation, an integrated lidar of ranging and communication based on pseudorandom code modulation was proposed. The system had the advantages of low power consumption, small volume and multi-function. Adopting pseudorandom code, the lidar system realized the integration of ranging and communication. Adopting silicon photomultiplier (SiPM) to achieve photon counting realized the miniaturization of lidar system. The design principle, component, simulation, and the experiment result of the system were introduced in detail. The result shows that the maximum detection range can reach 1 km for the target with 0.1 reflectivity under daylight, and the range resolution is less than 1 m. The maximum communication range can reach 3.7 km with 10 kbps code rate and error rate less than 10^{-5} .

Key words: autonomous navigation; pseudorandom code; silicon photomultiplier; ranging and communication integration; lidar

作者简介:张宇飞(1991-),男,博士生,主要从事新型三维成像激光雷达技术和激光测距技术方面的研究。Email:zhangyufei@siom.ac.cn 导师简介:贺岩(1977-),男,副研究员,主要从事测距测速激光雷达和激光三维成像技术方面的研究。Email:heyan@siom.ac.cn 陈卫标(1969-),男,研究员,博士生导师,主要从事固体激光器技术及先进激光雷达系统等方面的研究。

Email:wbchen@mail.shcnc.ac.cn

收稿日期:2018-04-11; 修订日期:2018-05-14

基金项目:创新基金(CXJJ-16M102)

0 引 言

随着社会的信息化和智能化,人们对无人驾驶 汽车、无人机、智能机器人等具有自主工作能力的智 能机器体的需求越来越迫切。这些智能机器体可以 在多种环境下工作,不但可以做一些重复性高或是 危险,人类不愿意从事的工作,也可以做一些因为尺 寸限制,人类无法做的工作^[1]。在这类研究中,自主 导航是一个十分重要的问题。从某种意义上来说,自 主导航是智能机器体的核心技术^[2]。智能机器体有 多种导航方式^[3]。其中,激光三维成像是一种主动探 测方式的三维成像技术,可以全天时的获得周围环 境的三维点云图像,成像范围广、抗干扰能力强、信 息量大、实时性好^[4-6]。智能机器体可以根据丰富的 点云数据实时获得周围情况,并根据情况完成避障、 目标识别、自主寻路等功能。

传统的三维成像激光雷达虽然能够获得周围环 境的三维图像,但在一些场合中,仅仅获得这些信息 是不够的。例如在无人驾驶领域,两辆车交会时,虽 然可以获得两辆车的距离信息,但却无法判断另一 辆车是否会转弯或并道,这样是十分危险的。因此, 这就要求两辆车间有一定的通信能力,相互告知即 将要做的动作。再如在无人机领域,无人机不但需要 对周围环境进行成像,判断自己在环境中的相对位 置,还需要知道环境的绝对坐标,如经纬度信息等, 若可以在成像的同时与环境中的某些特殊点进行通 信,这些点将自己的位置信息反馈给无人机,无人机 则可以精确的知道自己的绝对位置。此外还有很多 场合都要求我们的雷达不但要有获得周围环境三维 图像的能力,还要有与环境中特殊目标点交换信息 的能力。由于激光测距配合光机扫描结构即可构成 三维激光成像系统,是激光三维成像的核心,因此, 文中建立了一种激光测距、通信一体化的激光雷达 系统,用以验证这种复合型激光雷达的可行性。

1 测距、通信一体化原理

测距、通信一体化激光雷达结合了激光通信中的伪码调制技术、激光测距中的相关测距技术^[7-9]和 光子计数技术。采用直接扩频的方式将通信编码加 载在伪随机序列上,用调制后的序列进行相关测距, 即可获得目标的距离,而加载的通信编码则可以实 现通信。采用光子计数技术则降低了系统的功耗,增 加了探测距离。

伪随机序列是指:一个序列可以通过其随时间 的行为来预测,因此具有确定性的本质。但这个序列 又具有随机信号的某些特征,所以通常称为伪随机 序列。伪随机序列具有尖锐的自相关性,但与噪声等 随机序列的互相关值很小。因此,利用这个特性则可 以把淹没在噪声中的信息序列位置提取出来:用原 始伪随机序列与探测器接收到的回波序列进行相关 运算,从激光发射到相关峰值对应的时间间隔代表 了激光脉冲序列从发出到由目标反射并返回探测器 的时间间隔,由此则可给出目标的距离:

$$R = \frac{c\Delta t}{2} \tag{1}$$

式中: *R* 为目标距离; *c* 为光速; Δ*t* 为激光脉冲序列 飞行时间。

为了使伪随机序列在测距的同时实现携带信息的能力,需要对原始的伪随机序列进行调制,即加载 通信编码。加载方式为:保持前部分伪随机序列不 变,作为捕获标志码,以实现通信信息的同步。其余 部分则用直接扩频的方式将通信编码加载在伪随机 序列上¹⁰¹。

通信信号为 c(t), 码元速率为 R_c , 码元宽度为 $T_c, T_c = \frac{1}{P}$,则 c(t)为:

$$c(t) = \sum_{n=0}^{\infty} c_n g_c(t - nT_c)$$
⁽²⁾

式中:cn为二进制通信编码;gc(t)为门函数。

$$g_c(t) = \begin{cases} 1 & 0 \le t \le T_c \\ 0 & \pm \ell \ell \end{cases}$$
(3)

伪随机信号为a(t),码元速率为 R_a ,码元宽度为 $T_a, T_a = \frac{1}{R}$,则a(t)为:

$$a(t) = \sum_{n=0}^{\infty} a_n g_a(t - nT_a) \tag{4}$$

式中:an为二进制伪随机码码元;ga(t)为门函数。

$$g_a(t) = \begin{cases} 1 & 0 \le t \le T_a \\ 0 & \pm \psi \end{cases}$$
(5)

则最终的输出信号为:

$$d(t) = c(t) \oplus a(t) \tag{6}$$

解码的过程为:用捕获标志段的伪随机码序列

与接收到的回波序列进行实时相关运算,若有通信 码回传,则相关结果会出现一个尖锐的峰值,如图1 所示。回波能量会由于目标距离、回传角度等原因变动,相关峰值的大小也会随之变动,但无论峰值大小 如何变动,其前沿都比噪声窄的多,因此采用前沿鉴 别的方法来确定这个峰值位置,同时记录相关峰值 大小。峰值位置即是通信码开始的位置,从该位置开 始解算通信码则实现了通信码解算的同步。通信码 的解算方法为:将每段原始伪随机码序列依次与各 段接收回波序列进行相关运算,若大于解算阈值,则 认为该位通信码为"0",若小于解算阈值,则认为该 位通信码为"1"。解算阈值大小的设定与回波的能量 有关。同步捕获时记录的相关峰值的大小反应了该 次通信回波能量的大小,通过该相关值即可确定解 算阈值:

$$Th = \frac{1}{2} \cdot \frac{N_{\text{code}}}{N_{\text{catch}}} \cdot A \tag{7}$$

式中:Th 为通信码解算阈值;N_{code} 为加载 1 bit 通信 码的伪随机序列长度;N_{catch} 为捕获标志的伪随机序 列长度;A 为捕获标志的相关峰值大小。

通过这样的编解码方式,实现了伪随机序列功 能复用,同一段伪随机序列既完成了测距的功能,也 实现了通信信息的交换。在实际应用中,对非合作目 标可以进行测距,对合作目标(另一套雷达设备或被 动应答装置)则可以同时完成测距和通信。

2 系统组成

测距、通信一体化激光雷达采用低功率发射、高 灵敏度接收的技术路线。主要技术包括:伪随机码高 速调制技术、单光子探测技术、光子计数技术、相关 测距算法和直接扩频编解码算法。系统组成如图 2 所示,主要包括:激光发射模块、光学接收模块、单光 子探测模块和信号处理模块。

Fig.2 System structure diagram

信号处理模块通过串口接收上位机发出的启动 指令和通信编码,并根据上位机传下的通信编码生 成加载信息编码的伪随机序列,作为激光器驱动信 号。由激光器驱动电路控制激光二极管输出 OOK 调 制的激光编码脉冲串。光学接收模块接收目标的回 波光信号,经滤光片后输出到单光子探测器。单光子 探测器将光信号转变成电信号,经 AD 采集后传给 信号处理模块。信号处理模块将传来的信号分成两 路同时进行距离和通信信息的反演、解算,得到目标 距离和回传通信编码。最后通过串口将目标距离和 回传的通信编码上传至上位机。

激光发射模块包括激光二极管、激光二极管驱动 电路和激光发射光学系统。采用波长为808nm激光 二极管作为光源,峰值功率350mW。激光发射模块每 1ms发射一个伪随机码调制的激光脉冲串,即脉冲串 的频率为1kHz。每个脉冲串中包含1024位伪随机 码,调制频率为10MHz。激光发散角为1mrad。

光学系统采用收发旁轴的方式。接收口径 50 mm, 滤光片带宽 1 nm,由于探测器尺寸为 1 mm×1 mm, 为减小接收光学系统体积,采用双透镜组合的方式, 接收视场角为 1 mrad。光路图如 3 所示。

图 3 接收系统光路图 Fig.3 Diagram of receiver light path

单光子探测模块采用硅光电倍增管(SiPM),它增益高、灵敏度高、偏置电压低^[11]。在808 nm 波段,单光 子探测概率5%,能提供极高灵敏度的探测能力。

信号处理模块由一块 FPGA 和外围电路构成。 当上位机传来通信码后,每 50 bit 加载一位通信码, 生成调制后的伪随机序列,发给激光器驱动电路。 AD 对探测器数据进行采样,采样频率为 50 MHz, FPGA 对采集到的数据进行测距和通信的解算。

系统的主要技术参数如表1所示。

表 1 激光雷达的技术参数 Tab.1 Specifications of lidar

Item	Specification
Wavelength/nm	808
Divergence angle/mrad	1
Receiver aperture/mm	50
Bandwidth of filter/nm	1
PN code rate/MHz	10
PN code length/bits	1 024
Laser peak power/mW	350
Detector efficiency	5%
Data updating rate/kHz	1
Communication code rate/kbps	10
Power consumption/W	≤6
Weight/g	700

3 测距、通信仿真分析

光子计数探测方式的发射和接收是建立在光子的概念上的,即要把能量和功率转化成某段时间内的光子计数。因此激光雷达作用距离方程应该改写为光子形式。大目标的激光雷达作用距离方程为:

$$E_r = \frac{\rho E_r \eta_{\rm atm}^2 \eta_r \eta_r A_r}{\pi R^2} \tag{8}$$

由:*E=Nhv*,*h*为普朗克常数;*v*为光频率。则光 子形式的激光雷达作用距离方程为:

$$N_r = \frac{\rho N_r \eta_{\rm atm}^2 \eta_r \eta_r A_r}{\pi R^2}$$
(9)

式中:N,为单脉冲回波光子数;ρ为目标反射率;N, 为发射单脉冲光子数;ηam 为单程大气透过率;η,为 发射光学系统效率;η,为接收光学系统效率;A,为接 收面积; R 为目标距离。

回波脉冲被探测器接收转化为光电子,光电子 数服从泊松分布:

$$P_{\rm re} = \frac{(N_{\rm re})^a}{a!} \exp(-N_{\rm re}) \tag{10}$$

式中: P_r为产生 a 个光电子的概率; N_r为平均光电子数。

$$N_{\rm re} = \eta_q N_r \tag{11}$$

式中: η_a 为探测器探测概率。

采样时间 Δt 内平均背景光子数为:

$$N_{n} = \frac{\frac{1}{16} \pi I_{s} \rho \cos(\theta_{t}) \cos(\theta_{sum}) D^{2} \eta_{sys} \eta_{atm} \Delta \lambda \theta_{r}^{2} \Delta t}{hv}$$
(12)

式中: I_s 为太阳光谱辐照度; ρ 为目标反射率; θ ,为发 射光轴与目标法向的夹角; θ_{sum} 为太阳光入射方向与 目标法向的夹角;D为接收口径; η_{sys} 为光学系统透 过率; η_{atm} 为单程大气透过率; $\Delta\lambda$ 为滤光片带宽; θ , 为接收视场角; Δt 为采样时间;h为普朗克常数;v为 光频率。

背景光电子数同样服从泊松分布,其均值为:

$$N_{\rm ne} = \eta_q N_n \tag{13}$$

由此可知,单脉冲回波光子数服从均值为 N_{re} 的 泊松分布,背景光电子数则服从均值为 N_{ne} 的泊松 分布。因此可以利用 MATLAB 软件生成均值为 N_{re} 的泊松分布序列来模拟信号回波光电子序列,生成 均值为 N_{ne} 的泊松分布序列来模拟背景光电子序列。 则最终回波光电子序列是两个序列的和。

用加载通信码的伪随机码序列与该模拟序列进 行相关运算,即可模拟距离解算的结果,如图4所示。

图 4 测距仿真 Fig.4 Ranging simulation

用原始伪随机序列与该模拟序列进行相关运 算,即可模拟通信解算的结果,如图5所示。

图 5 通信仿真 Fig.5 Communication simulation

仿真参数如表2所示。由此可以看出在当前系 统参数下,可以实现1km范围内的测距、通信。

表 2 仿真参数

Tab.2 Specifications of simulation

Item	Specification
Wavelength/nm	808
Divergence angle/mrad	1
Receiver aperture/mm	50
Bandwidth of filter/nm	1
Target reflectivity	0.1
Target distance/km	1
Laser peak power/mW	350
Detector efficiency	5%
Atmospheric transmissivity	70%
Solar spectrum irradiance/W $\boldsymbol{\cdot} (\mu m \boldsymbol{\cdot} m^2)^{-1}$	790
System transmittance	35%

4 实验结果

建立了测距、通信一体化激光雷达系统,实物如 图6所示。对系统的实际测距、通信能力进行测试。

图 6 测距、通信一体化激光雷达 Fig.6 Ranging and communication lidar

在日光情况下,对1km 左右的目标建筑进行 测距实验。50次实际测试如图7所示。测距精度: 0.89m,目标距离:1042.8m。

通信过程需要两套雷达系统才能完成,这里采 用自发自收的形式进行验证:激光雷达发射出的信 号经80m处的建筑反射再回到该雷达系统进行通 信解码。测试结果如表3所示。

表 3 通信结果 Tab.3 Result of communication

Input	Number of tests	Number of error code
0x281	2 000	0
0x205	2 000	0
0x155	2 000	0
0x138	2 000	0
0x039	2 000	0
0x2aa	2 000	0

输入不同的 10 bit 通信码, 各统计 2 000 组,误 码个数为 0,可算得通信误码率小于 10⁻⁵。

由建筑物反射后接收能量为:

$$E_r = \frac{\rho E_r \eta_{atm}^2 \eta_r \eta_r A_r}{\pi R_1^2}$$
(14)

式中:E,为由物体反射后回到雷达接收系统的光能 量;ρ为物体反射率;E,为发射能量;ηam为大气单程透 过率;η,为发射光学系统透过率;η,为接收光学系统 透过率;A,为接收面积;R1为反射物体到雷达的距离。

而在真实通信时,激光是直接照射在接收光学 系统上的。则接收能量为:

$$E_r' = \frac{E_r \eta_{\rm atm}' \eta_r \eta_r A_r'}{2\pi R_2^2 \sin(\theta)}$$
(15)

式中:E,'为直接照射时的接收光能量; ηam'为直接照

第9期

射时的大气单程透过率; A_r '为接收面积; R^2 为直接 照射时,两台雷达的间距; θ 为激光发散角,其余定 义与公式(14)相同。其中, $A_r=A_r$ '。在中等能见度条件 下 $\eta_{atm}=0.98$ 。 $\theta=1$ mrad, $\rho=0.1$ 。

$$\eta_{\rm atm}' = e^{(-\kappa R_2)} \tag{16}$$

式中: κ 为808 nm激光在中等能见度的情况下的大 气消光比, $\kappa \approx 2.731 \times 10^{-4}$ 。

$$R_2 \approx 3.7 \times 10^3 \,\mathrm{m}$$
 (17)

因此,反演后的通信距离为3.7km。

5 结 论

采用伪随机码调制技术,用同一串激光脉冲序 列实现了测距和通信的功能复合。建立的测距、通信 一体化激光雷达系统,具有体积小、功耗低、多功能 的特点。在日光条件下实现了1km的测距和3.7km 的通信。测距精度小于1m,数据输出率1kHz,通信 码率10kbps,通信误码率小于10⁻⁵。

参考文献:

 Ren Fuji, Sun Xiao. Present situation and development of intelligent robot [J]. Science & Technology Review, 2015 (21): 32-38. (in Chinese)
 任福继,孙晓.智能机器人的现状及发展 [J]. 科技导报,

2015(21): 32–38.

[2] Liu Haitao, Guan Shengxiao, Qin Liang, et al. Study on vision-based navigation system of intelligent-robot. [J] Computer Applications and Software, 2010, 27 (12): 218-220, 242. (in Chinese)
 刘海涛,关胜晓,秦亮,等. 智能机器人视觉导航系统的研

究[J]. 计算机应用与软件, 2010, 27(12): 218-220, 242.

[3] Feng Jiannong, Liu Ming, Wu Jie. Survey of intelligent navigation of autonomous mobile robot [J] *Robot*, 1997(6): 69-74, 79. (in Chinese)

冯建农,柳明,吴捷. 自主移动机器人智能导航研究进展 [J]. 机器人, 1997(6): 69-74, 79.

- [4] He Min, Hu Yihua, Zhao Nanxiang, et al. Application of airborne three-dimensional laser imaging [J] Laser & Optoelectronics Progress, 2008, 45(4): 43-49. (in Chinese) 贺敏, 胡以华, 赵楠翔, 等. 机载激光三维成像技术应用现状[J]. 激光与光电子学进展, 2008, 45(4): 43-49.
- [5] Luo Y, He Y, Gao M, et al. Fiber laser-based scanning lidar for space rendezvous and docking [J]. *Applied Optics*, 2015, 54(9): 2470–2476.
- [6] Khan S A, Riza N A. Demonstration of 3-dimensional wide angle laser beam scanner using liquid crystals [J]. Optics Express, 2004, 12(5): 868–882.
- [7] Zhang Y, He Y, Yang F, et al. Three-dimensional imaging lidar system based on high speed pseudorandom modulation and photon counting [J]. *Chinese Optics Letters*, 2016, 14 (11): 111101.
- [8] Yang F, Zhang X, He Y, et al. High speed pseudorandom modulation fiber laser ranging system [J]. *Chinese Optics Letters*, 2014, 12(8): 082801.
- [9] Yang Fang, Zhang Xin, He Yan, et al. Laser ranging system based on high speed pseudorandom modulation and photon counting techniques [J]. *Infrared and Laser Engineering*, 2013, 42(12): 3234–3238. (in Chinese)
 杨芳,张鑫,贺岩,等.采用高速伪随机码调制和光子计数 技术的光纤激光测距系统 [J]. 红外与激光工程, 2013, 42 (12): 3234–3238.
- [10] Zhu Yongsong, Zhang Haiyong. Research on the direct sequence spread spectrum and its applications in the military
 [J]. *Ship Science and Technology*, 2005, 27(6): 79-81, 84. (in Chinese)
 朱永松,张海勇.直接序列扩频通信及其军事应用研究

[J]. 舰船科学技术, 2005, 27(6): 79-81, 84.

[11] O' neill K, Dolinsky S, Jackson C, et al. Sensl new fast timing silicon photomultiplier[J]. PoS, 2012, 22: 1–7.